MOBILITY MODELING IN SOI FETS FOR DIFFERENT SUBSTRATE ORIENTATIONS AND STRAIN CONDITIONS SHORT TITLE: MOBILITY MODELING IN SOI FETs
نویسندگان
چکیده
Conduction band modification due to shear stress is investigated. Mobility in singleand double-gate SOI FETs is modeled for Silicon thin body orientation (001) and (110) under general stress conditions. Decrease of conductivity mass induced by uniaxial [110] tensile stress leads to mobility enhancement in the stress direction in ultra-thin body SOI MOSFETs.
منابع مشابه
Effectiveness of Strain Solutions for Next-Generation MOSFETs
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission....
متن کاملMonte Carlo modeling of the electron mobility in strained Si 1 x Ge x layers on arbitrarily oriented Si 1 y Ge y substrates
Under strain the electronic properties of Si and SiGe significantly change. For the semiconductor industry the improvement of the kinetic properties is most interesting. In this work we present Monte Carlo modeling of the low field electron mobility in strained Si1 xGex layers grown on relaxed Si1 yGey substrates of arbitrary orientation. An analytical conduction band model is used. The valley ...
متن کاملLow-Field Mobility in Strained Silicon Inversion Layers and UTB MOSFETs for Different Substrate Orientations
To continue improvement of CMOS device performance process induced uniaxial stress is widely adopted in logic technologies starting from the 90 nm technology generation. In this work we model stress induced electron mobility enhancement in ultra thin body (UTB) MOSFETs for (001) and (110) substrate orientation using the Monte Carlo method. Uniaxial stress effects on the band structure are incor...
متن کاملFinite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials
Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...
متن کامل